

IEEE1905 + MultiAP-r2 architecture
- IOPSYS

IOPSYS IEEE1905

● In a 1905 device, how HLE communicates with the 1905AL is
implementation specific. It can be through any IPC mechanism.

● In iopsysWRT, HLE communicates to the IEEE1905 AL through
UBUS.
– IEEE1905 ALME SAP is implemented through ‘ieee1905*’ UBUS

objects and methods.

– The UBUS Interfacing Layer may invoke the underlying network
interfaces’ specific APIs to complete a HLE request.

– IEEE1905 ALME may create CMDU(s) if a specific HLE request
requires it to do so. For example, topology query CMDU(s) may be
generated by the ALME if HLE makes a get_neighbors UBUS request.

UBUS Interfacing layer

 (e.g. br-lan)

IEEE1905
HLE

interface

ieee1905
• info
• interfaces

ieee1905.al
• fwd {“action”:”add|del|list”, ...}

• ieee1905.al.<iface1>
ieee1905.al.<iface2>
• neighbors
• power {“action”:”on|off”}
• linkinfo

IOPSYS implements the HLE
interface through ieee1905*
UBUS object(s).

All communication between
ieee1905 devices in a multi-
AP network will happen
through standard CMDUs.

IOPSYS IEEE1905 stack

● IEEE1905 stack is implemented fully in the user space.
● The AL is implemented as a shared library (libieee1905al.so).
● The UBUS Interfacing Layer is also implemented as a shared library

(libieee1905ubus.so).
● User daemon ‘ieee1905d’ is responsible to start/stop the IEEE1905 stack.

– Script ‘/etc/init.d/ieee1905 start’ starts the ieee1905 stack, and
– ‘/etc/init.d/ieee1905 stop’ will stop it.

● During startup, the ‘ieee1905d’ configures the 1905 AL with the network interfaces it
reads from a UCI config file ‘/etc/config/ieee1905’. It then creates the corresponding
ieee1905* UBUS objects.

● During exit, it unregisters the network interfaces from the 1905 AL and destroys the
UBUS objects.

● Communication between HLE and the 1905 ALME happens through the ieee1905*
UBUS objects and methods.

Multi-AP integration

● Multi-AP (MAP) is implemented in a shared
library (libwifimap-2.so), separate from the
IEEE1905 stack.

● ‘libwifimap-2.so’ exposes well defined APIs,
which a MAP Agent can use to perform MAP
functions and use cases.

● ‘libwifimap-2.so’ is a IEEE1905 plugin, which can
expose additional MAP specific APIs through
‘libieee1905ubus.so’ over UBUS.

MAP
 CMDUs

UBUS

IEEE1905
plugins

IEEE1905 + Multi-AP modules

ieee1905dieee1905d wifimngrwifimngr dslmngrdslmngr

easy-soc-libs (libwifi.so, libdsl.so, libethernet.so etc.)

Hardware/Driver

libieee1905ubus.solibwifimap.so libieee1905al.so

CMDU/
Data path

Platform
Interface

topologydtopologyd

ieee1905*
ubus objects and

methods
+

MAP plugin methods
topology.*

ubus objects and
methods

wifi.*
ubus objects and

methods

dsl.*
ubus objects and

methods

wifiagent wificntlr ...

<other-plugin>

1905 CMDUs

UBUS

IOPSYS vs. 3rdParty Multi-AP

Map-r2 WiFiAgent

Map-r2 WiFiController

ieee1905 map-r2 plugin

ieee1905

MAP Agent

ieee1905ieee1905

map2

wificntlr

wifiagent

3rd Party MultiAP deviceIOPSYS MultiAP device

?

MAP TLV streams

MAP TLV streams

MAP CMDUs

Boot and startup - page1

Do_Init_wifiagent:

● /etc/init.d/wifiagent start

● Reads config file ("/etc/config/wifiagent") to know about -
fh-iface, bk-iface, onboarding status, 1905al, etc.

● Call Do_Cond_Init_ieee1905 if not already running.
[NOTE: wificntlr may have started it, or the earlier wifiagent could have crashed].

● Register itself with "1905map2" plugin with MAP_AGENT role.

● Initializes its own core.

● Notifiy "1905map2" plugin that it is ready to process CMDUs.

● If onboarded == false,

Then

Call Do_Onboarding_wifiagent

Else

Call Do_APAutoconfig_wifiagent

Boot and startup - page2

Do_APAutoconfig_wifiagent:

● forall fh-iface,
do

Send ap_autoconfig_search(fh-iface)
done.

Do_Rxhandle_wifiagent:

● Verify CMDU type and call appropriate handler functions.
[handler functions peform TLVs processing as per MAP2 Spec]

Do_Onboarding_wifiagent:

● forall bk-iface,
do

If bk-iface == WIFI,
Then

Do_WPS(bk-iface)
Else

Update bk-iface as onboarded = 1
done.

● Call Do_APAutoconfig_wifiagent

Boot and startup - page3

Do_Cond_Init_ieee1905:

● Get list of fh-iface and bk-iface which will be part of 1905 stack.
[wifiagent updates the config file "/etc/config/ieee1905" after
it knows about fh-ifaces and bk-ifaces from its conifg].

● Check for availability of plugins (t.x. 1905map2) and loads them.

● Create 1905* ubus objects for 1905 stack management, control and
status.

● Prepare 1905 AL, like setup rx handlers, msg-queues etc.

● Start 1905 AL.

Boot and startup - page4
Do_Init_wificntlr:

● /etc/init.d/wificntlr start

● Read config file ("/etc/config/wificntlr") to know about -
fh-iface credentials, bk-iface credentials for supported wifi bands, data-
elements collection interval, default policy for wifiagents in the network
etc.

● Call Do_Cond_Init_ieee1905 if not already running.

● Register itself with 1905map2 plugin with MAP_CONTROLLER role.

● Initialize its own core.

● Notifiy 1905map2 plugin that is is ready to process CMDUs.

● Call Do_APAutoconfig_wificntlr

Boot and startup - page5

Do_Rxhandle_wificntlr:

● Verify CMDU type and call appropriate handler functions.
[handler functions peform TLVs processing as per MAP2 Spec]

Do_APAutoconfig_wificntlr:

● Send ap_autoconfig_search with supported role Registrar.

● Call Do_Rxhandle_wificntlr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

